Scientists reanalyze the 1st black hole they ever identified and realize it’s bigger than they thought
Astronomers saw the first signs of the black hole in 1964
New confirmation suggests the first known Black Hole is bigger than previously thought, which may force scientists to reconsider their understanding of how giant stars give birth to black holes.
Scientists think stellar-mass black holes, which contain up to a few times the sun’s mass, form when giant stars die and collapse in on themselves. The first black hole ever discovered was Cygnus X-1, located within the Milky Way in the constellation of Cygnus, the Swan.
Astronomers saw the first signs of the black hole in1964 via gas it sucked away from a closely orbiting blue supergiant star. As this gas spiraled into the black hole, it became so hot it emitted high-energy X-rays and gamma-rays that satellites could detect.
A trio of studies in 2011 suggested Cygnus X-1 was located about 6,070 light-years from Earth, but the new research suggests the black hole is actually about 7,240 light-years away. Because other characteristics of the object are calculated based on distance, the new calculation argues that Cygnus X-1 is quite a bit larger than scientists had realized.
To estimate the black hole’s distance, scientists use the parallax technique, which examines Cygnus X-1 compared to its background. “If you hold a finger at arm’s length and close one eye and then the other, you will see it [your finger] appear to move from one spot to another in comparison with more distant background objects,” James Miller-Jones, an astrophysicist at the Curtin University node of the International Center for Radio Astronomy Research in Perth, Australia, lead author on the new study and co-author on some of the 2011 research, told Space.com. “Using that same idea, one can calculate how far away Cygnus X-1 was by looking at it from different vantage points as Earth moved around the sun.”
The 2011 work confirmed that the light from the black hole’s companion star to help estimate the star’s diameter. Researchers calculated other details of the partnership, such as the black hole’s mass, suggesting it was about 14.8 times that of the sun.
However, the 2011 research didn’t collect data from the black hole throughout a full orbit around its companion star. Without that information, the prior work could not fully account for how these orbital motions might affect the distance and mass estimates.
In the new study, Miller-Jones and his colleagues analyzed observations of Cygnus X-1 from the Very Long Baseline Array (VLBA), a giant radio telescope made of 10 dishes scattered across the U.S. Over the course of six 12-hour-long observations carried out on consecutive days, the researchers monitored the full orbit of the black hole.
Using the parallax technique on this new data combined with the 2011 data, the scientists found the black hole may be farther away from that previously estimated, about 7,240 light-years from Earth.